Myeloid HO-1 prevents kidney remote organ damage following renal IRI

Rossi M*†, Delbauve S†, Wespes E°, Roumeguère T*, Leo O†, Flamand V†, Le Moine A‡† and Hougardy JM‡†
*Urology and †Nephrology Departments, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
°Urology Department, CHU-Charleroi, Université Libre de Bruxelles, Charleroi, Belgium
‡Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium

Abstract ID: 18-2188

Background

Following renal IRI, the subsequent release of pro-inflammatory cytokines (e.g., IL-1β, TNF-α, IL-6) may induce a systemic inflammatory response, resulting in pro-inflammatory cells recruitment and remote organ damage. The heme oxygenase-1 (HO-1), a stress-responsive enzyme, protects kidney from renal IRI through multiple mechanisms when pharmacology induced before ischemia. The aim of this study was to understand the role of the myeloid HO-1 in the control of kidney remote organ damage following renal IRI.

Materials & Methods

Mouse model of renal IRI

Hemin protocol & readouts

Systemic inflammation

Liver

Lung

Results

I. Preconditioning with hemin induces HO-1 and protects against renal IRI

II. HO-1 mitigates systemic inflammation and subsequent remote organ damage

Conclusions

• HO-1 spontaneously controls the magnitude of renal IRI and the subsequent systemic inflammation-induced remote organ damage
• This HO-1-mediated renoprotective pathway may be modulated by hemin administration
• Targeting HO-1 might represent a promising approach to prevent the impact of IRI on renal transplants and distant organs