SMYD3 Promotes Tumorigenic Phenotypes and Progression of Bladder Cancer via Direct Activation of IGF-1R/AKT/mTOR Signaling Pathway
Cheng Liu1, Li Liu2, Runzhuo Ma3, and Lulin Ma1
1Department of Urology, Peking University Third Hospital, Beijing, China; 2School of Nursing, Shandong University and School of Nursing, Beijing University of Chinese Medicine, China

Introduction
AKT/mTOR pathway is critical for bladder cancer (BC) and is aberrantly activated during BC progression. However, few studies have addressed the epigenetic regulation AKT/mTOR signaling in BC. SET and MYND domain-containing protein 3 (SMYD3) is a histone methyltransferase that targets histone H3-K4 for di/trimethylation. In the present study, we determine the role and the underlying mechanism of SMYD3 in the pathogenesis of BC.

Materials and methods
The expression of SMYD3 was examined via Western blot, real-time PCR and immunohistochemistry in a cohort of BC tissues. A series of in vivo and in vitro assays was performed to elucidate the contribution and underlying mechanism of the SMYD3/IGF-1R (insulin-like growth factor-1 receptor)/AKT axis in BC phenotypes and progression.

Results
1. SMYD3 is upregulated in BC tissues and is a poor prognostic indicator of BC.
2. The SMYD3 requirement for tumorigenicity of T24 and 5637 cell lines.
3. The induction of apoptosis and activation of the AKT/mTOR signaling pathway in BC cells.
4. SMYD3-induced IGF-1R transcription through promoter chromatin remodeling.
5. The model for SMYD3-mediated BC development and progression.

Conclusions
Our findings suggest that IGF-1R is a new target gene of SMYD3, and by stimulating IGF-1R transcription, SMYD3 activates the AKT/mTOR pathway, thereby contributing to BC development and progression.