NOVEL THREE-DIMENSIONAL ORGANOID CULTURE REVEALS INVOLVEMENT OF WNT/BETA-CATENIN PATHWAY IN PROLIFERATION OF BLADDER CANCER CELLS

Takahiro Yoshida1, Nikolai A. Sopko1, Max Kates1, Xiaopu Liu1, Gregory Joice1, David J. McConkey1,2, Trinity J. Bivalacqua1,2
1 The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD
2 The Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD

Introduction
There has been increasing awareness of the importance of three-dimensional culture of cancer cells. Tumor cells growing as multicellular spheroids (organoids) are believed to more closely mimic solid tumors in situ. Meanwhile, Wnt/β-catenin pathway was reported to be upregulated in human bladder cancer specimens. However, no clear evidence has been reported that the pathway is directly involved in proliferation of bladder cancer cells. In this study, we assessed the involvement of Wnt/β-catenin pathway in proliferation of bladder cancer cells in organoid culture using both immortalized cell lines and primary cells derived from patient samples.

Methods

Conclusions
We showed for the first time that Wnt/β-catenin pathway was directly involved in proliferation of bladder cancer cells, suggesting that Wnt/β-catenin pathway may be a potential target for the treatment of a subset of bladder cancer.

The above finding could not be observed when the same cells were grown in conventional two-dimensional adherent cultures, providing a concrete example of why organoid culture is important for cancer research.

Results

Figure 1. CHR inhibited proliferation of cell lines in conventional adherent culture, but promotes proliferation in 3D organoid culture.
(A) In adherent culture, CHR exhibited an inhibitory effect on proliferation of RT4 and 5637 in a dose-dependent manner. (B-D) However, CHR promoted proliferation of RT4 and 5637 in organoid culture. Representative images of RT4- and 5637-derived organoids treated with DMSO or CHR are shown in (B), (C) Growth of organoids was quantified by area of organoids (C) and ATP value (D).

Figure 2. CHR activates Wnt/β-catenin pathway in bladder cancer cell line-derived organoids.
(A) qRT-PCR showed upregulation of AXIN2 transcripts in CHR-treated organoids compared to DMSO-treated ones. (B) Western blot analysis demonstrated increased amount of β-catenin protein in CHR-treated organoids in both cytosol and nuclei.

Figure 3. CHR promotes proliferation of cancer cells in patient-derived organoids with activation of Wnt/β-catenin pathway.
(A-C) Organoids from 4 patient samples were challenged by CHR treatment. Representative images of patient-derived organoids treated with DMSO or CHR are shown in (A). Growth of organoids was quantified by area of organoids (B) and ATP value (C). (D,E) qRT-PCR showed upregulation of AXIN2 transcripts in CHR-treated organoids compared to DMSO-treated ones. Results of BCA04 and 3 pooled samples are shown in (D) and (E), respectively. (F) Immunocytochemistry demonstrated nuclear localization of β-catenin in CHR-treated organoids.

Figure 4. β-catenin is required for growth of bladder cancer organoids.
(A) Western blot shows knockdown efficiency of siRNA against β-catenin in RT4 and 5637. (B-C) After transfection of siCTNNB1, CHR-induced growth of RT4-derived organoids impaired. Representative images were shown in (B), and the growth was quantified and shown in (C). (D,E) After transfection of siCTNNB1, CHR-inducible growth of 5637-derived organoids was suppressed. Representative images were shown in (D), and the growth was quantified and shown in (E).

Figure 5. CK20 is less expressed in CHR-treated bladder cancer organoids.
(A, B) Expression of luminal (CK20, CK18) and basal (CK14, CK5) markers were analyzed by qRT-PCR (A) and western blotting (B) in RT4- and 5637-derived organoids treated with DMSO or CHR. (C, D) qRT-PCR showed luminal and basal markers expression in CHR-treated patient-derived organoids compared to DMSO-treated ones. Results of BCA04 and 3 pooled samples are shown in (C) and (D), respectively. CK20 was consistently less expressed in CHR-treated organoids.

Source of Funding
The Greenberg Bladder Cancer Institute Research Grant and the Urology Care Foundation