MP 53-09

1. Background

The algorithm APhiGT was developed by using logistic The accuracy of prostate cancer (PC) clinical staging prior to radical treatment is an actual problem. The aim of our study regression method (Figure 1). was to develop a new mathematical algorithm for PC staging Figure 1. Plan of multiparameter algorithm APhiGT based on a set of laboratory and clinical data.

2. Methods

The design of our study has been conducted in accordance with the principles of the Declaration of Helsinki of World Medical Association. During 2008-2015, 337 PC patients who underwent radical prostatectomy (RPE) were included in the retrospective study. The average age of the patients was $62,7 \pm$ 0,4 years. All patients were characterized by TNM and pTNM (Table 1), and by Gleason grading before and after RPE (Table 2).

Table 1. Patients' characteristics (TNM staging)					
	pT ₂ N0	pT₃N0	pT ₂₋₃ N+	Σ	
TNM/pTNM	N (%)	N (%)	N (%)	Ν	
T ₁₋₂	190 (56%)	68 (20%)	15 (5%)	273	
T ₃	16 (5%)	20 (6%)	28 (8%)	64	
Sum ∑ (N)	206	88	43		

Table 2. Patients' characteristics (Gleason grading)						
Gleason score before/ after prostatectomy	<7 after N (%)	≥7 after N (%)	Σ N			
< 7 before	141 (42%)	65 (19%)	206			
≥ 7 before	11 (3%)	120 (36%)	131			
Sum ∑ (N)	152	185				

Based on pTNM and morphological Gleason (p Gleason) grading PC were divided into indolent (pT2 and Gleason <7,

n=124) and aggressive (pT3 and/or Gleason \geq 7, n=213). For the APhiGT algorithm, decisive rules have been Serum levels of total prostate-specific antigen (tPSA, < 30.0 developed. With APhiGT <3,4, we can predict pT2 and p Gleason ng/ml), free PSA (fPSA), [-2]pPSA were measured on Beckman <7. With APhiGT >5,0 – pT3 and/or p Gleason \geq 7. Interval APhiGT Coulter Access 2 Analyzer using Hybritech calibration, with 3,4-5,0 is a gray zone, the probability of aggressive PC increases calculation of Prostate health index (Phi). with elevation of APhiGT.

Poster presented at the AUA Annual Meeting, May 18–21, San Francisco, CA, USA

New algorithm APhiGT for prostate cancer staging

Boris Alekseev¹, Tatiana Skachkova¹, Natalia Sergeeva¹, Sergey Pirogov², Valentin Gitis², Evgeny Yurkov², Andrey Kaprin¹

¹National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Moscow, Russia; ² Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia

2. Methods (continued)

Age]_	= N (number of full	0,025		
		years)		Α	Age
tPSA]→	= Phi =	0.01		Drestate
fPSA	┣	$\frac{[-2]pPSA}{*\sqrt{tPSA}}$	0,01	Phi	Prostate
[-2]pPSA	┣┨	fPSA fPSA			nealth index
Gleason	וו	= 1, if <7	1		Gleason
score		= 2, if 7 (3+4)		G	score
(biopsy)		= 3, if >7 = 4, if >7			
				Ŧ	TNM
TNM		= 1 , if $T_{1-2}N_0$	0,6	I	classification
		- Z, II 1 ₃₋₄ IN ₀			

APhiGT is calculated by the formula: APhiGT = 0,025 * A + 0,01 * Phi + G + 0,6 * T

Analysis was performed for tPSA, Phi and APhiGT with sensitivity, specificity and AUC calculation.

3. Results

ROC-analysis showed the advantage of the APhiGT algorithm in front of Phi and tPSA in the binary separation of patients into pTNM and p Gleason risk groups (Table 3), as well as in the separation of clinical insignificant (indolent) and significant (aggressive) PC (Table 4) in general tPSA range \leq 30 ng/ml, and in narrow target tPSA range 2,5-10,0 ng/ml (Figure 2).

3. Results (continued)

Table 3. Results of ROC-analysis for comparison of clinical groups (tPSA range $\leq 30 \text{ ng/ml}$)

	AUC (area under ROC curve)		
Parameter	p Gleason < 7 vs ≥ 7	pT2 vs pT3	
tPSA	0,653	0,752	
Phi	0,672	0,767	
APhiGT	0,862	0,800	

Table 4. Results of ROC-analysis for comparison of PC aggressiveness

	AUC (area under ROC curve)			
	Indolent (I) vs Aggressive (A) PC			
tPSA range	≤ 30 ng/ml 2,5-10,0 ng/m			
Ν	124 I vs 213 A	76 I vs 67 A		
tPSA	0,703	0,577		
Phi	0,73	0,675		
APhiGT	PhiGT 0,872			

Figure 2. ROC-Curves for comparison of PC aggressiveness and Gleason score (tPSA range 2,5-10,0 ng/ml).

3. Results (continued)

pGl	Ν	tPSA	Phi	APhiGT
< 7	152	10,1 ± 0,5 (8,2)*	61,7 ± 2,4 (58,2)	3,87 ± 0,04 (3,77)
Р		0,004	0,001	< 0,001
7 (3+4)	93	12,7 ± 0,7 (10,7)	76,0 ± 3,6 (71,2)	4,64 ± 0,09 (4,52)
Р		0,049	0,014	< 0,001
7 (4+3)	54	15,4 ± 1,2 (13,9)	96,8 ± 7,5 (87,7)	5,77 ± 0,14 (5,88)
Р		0,337	0,637	< 0,001
> 7	31	17,3 ± 1,6 (15,5)	102,7 ± 9,9 (90,6)	6,69 ± 0,21 (6,77)

*Mean ± SE (Median)

рТ	Ν	tPSA	Phi	APhiGT
pT2a-b	16	8,7 ± 1,0 (7,6)*	58,3 ± 8,9 (52,4)	4,21 ± 0,28 (3,62)
Р		0,269	0,834	0,972
pT2c	191	9,8 ± 0,4 (8,3)	60,2 ± 1,9 (58,2)	4,20 ± 0,07 (3,86)
Р		<0,001	< 0,001	< 0,001
рТЗа	66	15,5 ± 1,0 (13,2)	92,2 ± 5,8 (83,5)	5,15 ± 0,16 (4,75)
Р		0,170	0,101	0,0045
pT3b	64	17,6 ± 1,0 (16,9)	106,7 ± 6,7 (100)	5,79 ± 0,16 (5,75)

*Mean ± SE (Median)

I/A*	Ν	tPSA	Phi	APhiGT
pT2N0,				
pG < 7	124	9,1 ± 0,5 (7,8)**	55,9 ± 2,4 (52,0)	3,77 ± 0,04 (3,69)
Р		0,039	0,009	< 0,001
pT2N0,				
pG ≥ 7	82	10,8 ± 0,7 (9,9)	66,0 ± 3,0 (62,8)	4,83 ± 0,12 (4,66)
Р		<0,001	< 0,001	0,057
pT3N0	88	15,6 ± 0,8 (14,8)	91,7 ± 3,8 (91,8)	5,17 ± 0,13 (4,99)
Р		0,095	0,043	< 0,001
pN+	43	18,3 ± 1,5 (18,1)	114,8 ± 10,6 (93)	6,08 ± 0,19 (6,15)

* Indolent (I) vs Aggressive (A) PC

**Mean ± SE (Median)

4. Conclusions

These results show the high diagnostic potential of APhiGT algoritm for prostate cancer staging before treatment.

5. Corresponding Author

B. Alekseev: byalekseev@mail.ru