Background
- Black men have 1.6 fold higher prostate cancer (PCa) incidence and 2-3 times the mortality rate compared to White men.
- Studies have linked Black race to PCa risk but most fail to account for established risk factors such as 5-ARI use, prostate volume, socio-economic status, and clinical setting.

Research Objectives
- To assess whether Black race independently predicts overall and significant PCa diagnosis on initial biopsy when controlling for established clinical, behavioral and socioeconomic risk factors, and hospital funding type in a multi-racial cohort.
- To examine changes in the effect size of Black race in men ages 40-54, who are excluded from US Preventive Services Task Force (USPSTF) PCa screening recommendations.

Methods
- Recruited 564 men over age 40 undergoing initial prostate biopsy for abnormal PSA or digital rectal examination (DRE) from three publicly funded and two private hospitals in Chicago from 2009-2014.
- Genetic West African ancestry (WAA) estimated using panel of 105 ancestry informative markers.
- Multivariate analyses examined the associations between clinical setting, race, WAA, and sociodemographic risk factors, PCa diagnosis and Gleason ≥3+4 PCa.
- Subgroup analysis performed for men age 40-54

Results
- Black men had higher median PSA (8.1 vs 5.6 ng/ml), PSA (0.22 vs 0.15 ng/ml/cm³) compared to non-Blacks (all p<0.05).
- Blacks had lower frequency of marriage (39.0% vs 72.2%), higher rates of poverty (61.7% vs 43.3%), were more likely to have smoked (64.8% vs 56.0%) and more likely to be recruited from public hospitals (89.2% vs 51.3%, all p<0.05).
- Blacks had increased rates of Gleason ≥3+4 PCa relative to non-Blacks in both public (27.7% vs 11.6%, p<0.001) and private (48.4% vs 21.6%, p<0.002) settings.
- WAA was not predictive of overall PCa diagnosis in Blacks either as a continuous variable (p=0.71) or in quartiles (Q1-Q3, p=0.001) and private (48.4% vs 21.6%, p<0.002).
- For men aged <55, Black race (OR 5.66, 95% CI: 1.39-23.16, p=0.02) and family history (OR 4.98, 95% CI: 1.39-17.87, p=0.01) were significant in multivariable models substituting WAA in place of Black race.
- Blacks had lower frequency of marriage (39.0% vs 72.2%), higher rates of poverty (61.7% vs 43.3%), were more likely to have smoked (64.8% vs 56.0%) and more likely to be recruited from public hospitals (89.2% vs 51.3%, all p<0.05).

Conclusions
- Black race remains associated with PCa after adjusting for clinical setting, clinical and socioeconomic risk factors.
- Black race is the strongest risk factor of PCa for men under 55 years.
- Black race remains associated with PCa after adjusting for clinical and socioeconomic risk factors.
- Black race is the strongest risk factor of PCa for men under 55 years.

Table 1: Biopsy outcomes stratified by race

<table>
<thead>
<tr>
<th>Race</th>
<th>Suspicious DRE</th>
<th>Normal DRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>30 (27.7%)</td>
<td>90 (82.3%)</td>
</tr>
<tr>
<td>Non-Black</td>
<td>40 (40.0%)</td>
<td>60 (59.0%)</td>
</tr>
</tbody>
</table>

Table 2: Binary logistic regressions for Black race versus overall prostate cancer diagnosis and Gleason ≥3+4 prostate cancer diagnosis

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Odds Ratio (95% C.I.)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black race</td>
<td>2.93 (1.60-5.33)</td>
<td><0.001</td>
</tr>
<tr>
<td>Abnormal DRE</td>
<td>1.54 (0.74-3.21)</td>
<td>0.26</td>
</tr>
<tr>
<td>Non-Black race</td>
<td>0.86 (0.58-1.30)</td>
<td>0.50</td>
</tr>
<tr>
<td>Abnormal DRE</td>
<td>1.50 (0.86-2.63)</td>
<td>0.17</td>
</tr>
<tr>
<td>Non-Black race</td>
<td>0.91 (0.53-1.55)</td>
<td>0.74</td>
</tr>
</tbody>
</table>

MP21 #18-4062

Black Race Predicts Significant Prostate Cancer Independent of Clinical Setting and Clinical and Socioeconomic Risk Factors

Oluwarotimi S. Nettey MD, MHS1, Austin J. Walker BS3, Mary Kate Keeter MPH1, Aishwarya Nugooru1, Iman C. Martin PhD2, Maria Ruden MS1, Pooja Gogana BS3, Michael A. Dixon BS3, Tijani Osumi MD4, Courtney M.P. Hollowell MD5, Roohollah Sharifi MD6,7, Marin Sekosan MD5, Ximing Yang MD, PhD10, William J. Catalona MD1, Joshua J. Meeks MD, PhD1, Andre Kajdaszy-Balla MD, PhD5, Virgilia Macias MD11, Rick A. Kittles PhD11, Adam B. Murphy MD, MSCI1,6

1Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 2Community Oncology and Prevention Trials Research Group, National Cancer Institute, Bethesda, MD, 5Department of Medicine, University of Illinois at Chicago, Chicago, IL, 3Ross University School of Medicine, Miramar, FL, 6Division of Urology, Cook County Medical and Hospitals System, Chicago, IL, 7Section of Urology, Jesse Brown VA Medical Center, Chicago, IL, 8Department of Urology, University of Illinois at Chicago School of Medicine, Chicago, IL, 9Department of Pathology, University of Illinois at Chicago School of Medicine, Chicago, IL, 10Division of Health Equity, Department of Population Sciences, City of Hope Cancer Center, Duarte, CA.

11Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 7Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 8Department of Urology, University of Illinois at Chicago School of Medicine, Chicago, IL