We prospectively collected 116 rectal swab samples at least 2 weeks prior to transrectal prostate biopsy, and performed 16S rRNA amplicon sequencing (MiSeq paired-end) using the V1V2 primer set. Taxonomic assignment was performed using Resphera Insight, and alpha and beta-diversity analysis was performed using QIIME. PERMANOVA was employed to evaluate statistical significance of beta-diversity distances within and between groups of interest. Differential abundance analysis utilized the nonparametric difference test for alpha diversity measures and the negative binomial test for taxonomic count data with P-value correction using the False Discovery Rate (FDR).

Introduction/Objective

- Fluoroquinolone resistant (FQR) E. coli = prostate biopsy infections
- Our objective is to evaluate the gut microbiome of individuals positive or negative for FQR E. coli to identify bacterial members associated with resistance to FQR colonization
- Potentially for development of non-antibiotic means to alter gut flora prior to prostate biopsy

Methods

We prospectively collected 116 rectal swab samples at least 2 weeks prior to transrectal prostate biopsy, and performed 16S rRNA amplicon sequencing (MiSeq paired-end) using the V1V2 primer set. Taxonomic assignment was performed using Resphera Insight, and alpha and beta-diversity analysis was performed using QIIME. PERMANOVA was employed to evaluate statistical significance of beta-diversity distances within and between groups of interest. Differential abundance analysis utilized the nonparametric difference test for alpha diversity measures and the negative binomial test for taxonomic count data with P-value correction using the False Discovery Rate (FDR).

Results

Of the clinical cultures we identified 18 isolates (16%, 18/116) were FQR E. coli positive. Men positive for FQR E. coli maintained reduced alpha diversity compared to non-FQR subjects (inverse Simpson; P=0.05). The association of microbial community membership with FQR status was found to be significant for Bray-Curtis (P=0.047) and weighted-UniFrac measures (P=0.01). Enterobacteriaceae relative abundance was significantly over-represented in the FQR subjects (adj. P = 0.03), while the bacterial family Aeromonadaceae was absent in the culture group despite low relative abundance in non-FQR subjects (adj. P = 0.001). At the species level, Prevotella disiens was significantly enriched in FQR negative subjects (adj. P = 0.012), while Shigella flexneri and Proteus mirabilis were significantly higher in the FQR positive group (adj. P=0.017 and adj. P=0.028, respectively).

Conclusions

Men colonized with FQR bacteria have:
- Less diverse bacterial communities (dysbiosis)
- Higher levels of Enterobacteriaceae
- Reduced levels of Prevotella disiens
- Implications in pre/probiotic intervention