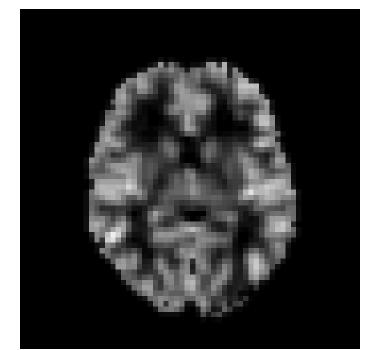
Quantification of Cerebral Blood Flow During Bladder Filling in Healthy Subjects

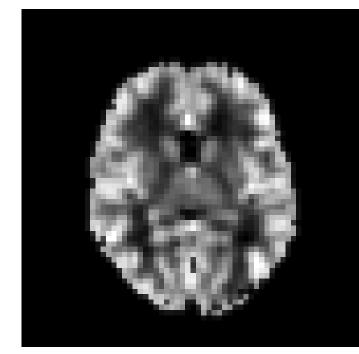
Justina Tam, Kenneth Wengler, Jason Kim, Wayne Waltzer, Xiang He, Steven Weissbart **Department of Urology, Stony Brook Medicine Abstract ID: 18-9539**

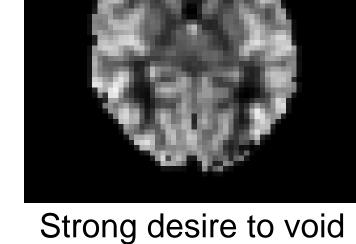

Introduction

- Urine storage and emptying is a complex physiologic process under the control of the central nervous system
- The micturition pathway has been studied through various functional brain imaging studies
- However, how brain activity changes as bladder volume and bladder sensations change remains unclear
- The aim of our study is to quantify cerebral perfusion and change in brain activity in healthy subjects during bladder filling

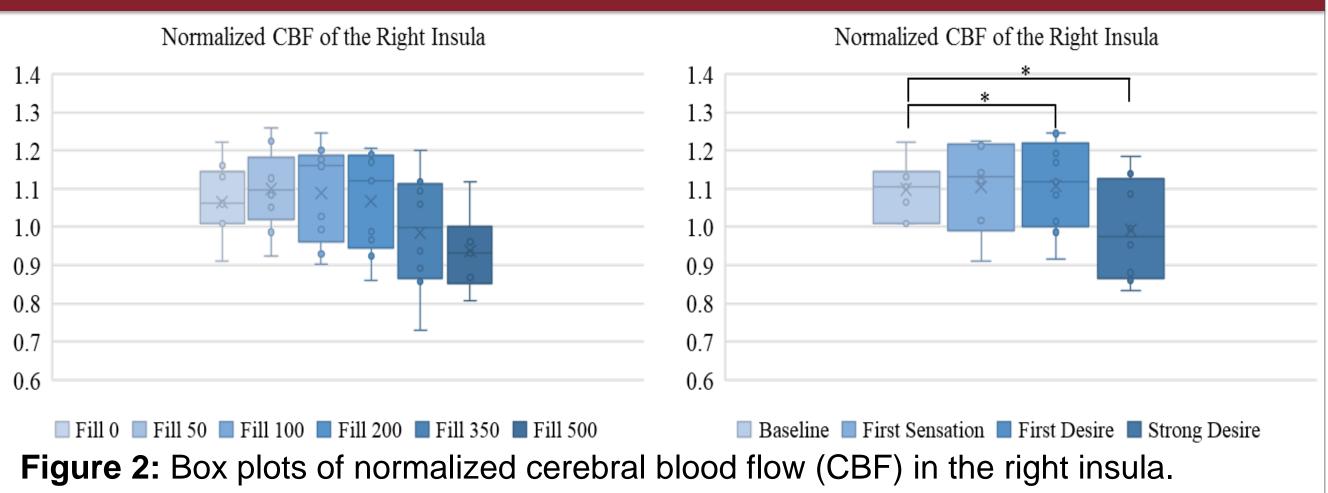
Methods

- Healthy women without overactive bladder were recruited to undergo functional magnetic resonance imaging (fMRI) during bladder filling
- Bladder filling was performed by infusing saline into the bladder at a rate of 50ml/s through a foley catheter
- During bladder filling, subjects were given a response button to signal: first sensation of bladder filling, first desire to void, and strong desire to void
- Scans were performed at set bladder volumes: 0mL, 50mL, 100mL, 200mL, 350mL, and 500mL
- Institutional IRB approval was obtained prior to initiation of the study




Baseline

	Normalized Cerebral Blood Flow				
Region of Interest	Baseline	First desire to void	Strong desire to void	∆(First desire - baseline)	Δ(Strong desire - first desire)
Rt. ACC	0.89 ± 0.06	0.92 ± 0.08	0.90 ± 0.09	0.03 ± 0.04 *	-0.02 ± 0.07
Lt. ACC	0.96 ± 0.08	0.98 ± 0.09	0.89 ± 0.11	0.03 ± 0.06	-0.07 ± 0.10
Rt. DLPFC	1.71 ± 0.21	1.63 ± 0.18	1.59 ± 0.19	-0.07 ± 0.11	-0.05 ± 0.07
Lt. DLPFC	1.30 ± 0.28	1.26 ± 0.26	1.33 ± 0.19	-0.04 ± 0.10	0.02 ± 0.16
Rt. Hippocampus	0.99 ± 0.08	1.02 ± 0.08	0.98 ± 0.16	0.03 ± 0.07	-0.04 ± 0.10
Lt. Hippocampus	0.91 ± 0.07	0.91 ± 0.07	0.87 ± 0.11	0.00 ± 0.06	-0.05 ± 0.05 *
Rt. Insula	1.06 ± 0.09	1.10 ± 0.11	0.99 ± 0.13	0.04 ± 0.05 *	-0.10 ± 0.09 *
Lt. Insula	0.90 ± 0.05	0.95 ± 0.06	0.88 ± 0.08	0.04 ± 0.03 **	-0.07 ± 0.06 **
Rt. PCC	0.83 ± 0.07	0.83 ± 0.07	0.79 ± 0.09	0.01 ± 0.04	-0.04 ±0.04 *
Lt. PCC	0.92 ± 0.07	0.92 ± 0.08	0.89 ± 0.09	0.00 ± 0.03	-0.03 ± 0.04
Rt. Pons/midbrain	1.08 ± 0.11	1.10 ± 0.11	1.08 ± 0.13	0.03 ± 0.05	-0.04 ± 0.07
Lt. Pons/midbrain	1.08 ± 0.12	1.10 ± 0.12	1.07 ± 0.12	0.02 ± 0.06	-0.03 ± 0.09
Rt. SMC	1.04 ± 0.12	0.99 ± 0.08	1.04 ± 0.15	-0.04 ± 0.06 *	0.03 ± 0.11
Lt. SMC	0.95 ± 0.14	0.89 ± 0.11	0.96 ± 0.18	-0.05 ± 0.06 *	0.06 ± 0.13
Rt. SMA	1.21 ± 0.09	1.19 ± 0.07	1.22 ± 0.10	-0.02 ± 0.06	0.01 ± 0.09
Lt. SMA	1.04 ± 0.12	1.02 ± 0.14	1.07 ± 0.16	-0.02 ± 0.07	0.03 ± 0.10
Rt. Thalamus	0.81 ± 0.06	0.83 ± 0.06	0.80 ± 0.08	0.02 ± 0.05	-0.02 ± 0.05
Lt. Thalamus	0.87 ± 0.06	0.89 ± 0.08	0.86 ± 0.08	0.03 ± 0.05	-0.03 ± 0.04


Table 1: Cerebral blood flow (CBF) values normalized to the global average at baseline (0mL), for first desire and strong desire states in 18 regions of interest, all previously demonstrated to have a role in micturition pathway^{1,2}. * denotes p<0.05 and ** denotes p<0.01.

Results

First desire to void **Figure 1:** fMRI images of a subject obtained at baseline and during bladder filling

* denotes p<0.05.

- Increased CBF at first desire to void was seen in the insula, and right anterior cingulate cortex
- Decreased CBF at first desire to void was seen in the supplemental motor cortex
- Decreased CBF at strong desire to void seen in the insula, right posterior cingulate cortex, and left hippocampus

Brain Region	k
Insula	Visc
Hippocampus	Con mer mer
Anterior cingulate cortex	Emo mot
Posterior cingulate cortex	Emo meo
Supplemental motor cortex	Coo

Results

Results

Known Function

- ceral sensation
- nsolidate short term mory to long term mory, spatial memory
- otional response, tivational behavior
- otion, memory, attention, ditation
- ordination of movement

Conclusion

- Regional brain perfusion during bladder filling can be objectively quantified
- These data may serve as a reference point for future studies investigating normal and abnormal bladder function
- Unclear what role the brain regions of interest may play during filling
- Our results support the hypothesis that cerebral blood flow increases as the desire to void increases until it reaches a critical point and decreases to potentially suppress desire to void³

References

¹Arya NG, Weissbart SJ, Xu S, Rao H. Brain activation in response to bladder filling in healthy adults: An activation likelihood estimation meta-analysis of neuroimaging studies. Neurourol Urodyn. 2017;36(4):960-965.

²Kavia RBC, Dasgupta R and Fowler CJ. Functional imaging and the central control of the bladder. J Comp Neurol. 2005; 493: 27–32. ³Lerner A, Bagic A, Hanakawa T, et al. Involvement of Insula and Cingulate Cortices in Control and Suppression of Natural Urges. Cereb Cortex. 2009;19(1):218-223