

Eighteen Years of Holmium Laser Enucleation of the Prostate: A Single Center Experience

Ahmed Ibrahim, Mohannad Alharbi, Mostafa Elhilali, and Serge Carrier Urology Department, McGill University, Montreal, Quebec, Canada

BACKGROUND

Meta-analyses and well-designed randomized controlled trials have confirmed how well established holmium laser enucleation of the prostate (HoLEP) for treatment of benign prostatic hyperplasia (BPH). HoLEP showed superior efficacy compared to the traditional transurethral resection of the prostate. The preliminary data and randomized trial comparing HoLEP and TURP were Previously reported with subsequent multiple publications from our institution. The long-term data and further analysis of these patients are now presented.

OBJECTIVE

The objective of the present study was to report our experience with long-term outcomes of HoLEP over a period of 18 years

METHODS

Between March 1998 and March 2016, a prospectively collected database for patients undergoing HoLEP for symptomatic BPH performed by single expert surgeon was reviewed. Demographic and perioperative data were collected together with the International Prostate Symptoms Score (IPSS), Quality of Life (QoL), peak flow rate (Qmax), residual urine (PVR), and PSA changes. In addition, perioperative and late adverse events were recorded.

RESULTS

Table 1: Demographic and perioperative data with long-term complications

Variables		Mean±SD	No (%)
Age at time of surgery (years)		68.9	
Preoperative PSA (ng/dl)	6.1 ± 5.4		
Preoperative IPSS	15.9 ± 6.5		
Preoperative QoL	1.5 ± 1.4		
Preoperative Qmax	7.2 ± 4.0		
Preoperative PVR	204 ± 258		
Preoperative prostate size by TRUS		90.4±50.4	
Preoperative IIEF-score	1.8 ± 7.65		
Perioperative Data	Energy utilized (KJ)	211.26±155.10	
	Operating time (min)	110.4±47.1	
	Enucleation time (min)	90.8±43.6	
	Morcellation time (min)	19.6±13.4	
	Catheterization time (days)	1.2±0.6	
	Hospital stay (days)	1.28 ± 0.96	
Intraoperative complications	Bleeding required monoplar		54 (3.7%)
	Bladder injury		18 (1.2%)
	Urethral injury		3(0.2%)
	Capsular perforation		4(0.27%)
Long-term Complications	Persistent LUTS		46 (3.2%)
	Chronic urine retention (CIC)		10 (0.7%)
	Persistent urge		25 (1.7%)
	Bladder neck contracture		30 (2.1%)
	(BNC)		
	Urethral stricture		21 (1.4%)
	Bladder stone		11 (0.75%)
	Redo for regrowth adenoma		21 (1.4%)

Table 2: Long term outcome of HoLEP after 10 years follow-up

Variable	Baseline Mean ± SD	Post- operative Mean ± SD	% Change	p-value
PSA (ng/ml)	5.1± 4.4	1.7 ± 2.0	66.7	< 0.001
IPSS	15.9 ± 6.5	6.8 ± 5.6	57	< 0.001
QoL	3.1 ± 1.4	1.5± 1.4	52	< 0.001
Qmax (mL/sec)	7.2±4.0	17.7±10.4	59	< 0.001
PVR (mL)	204 ± 258	43±73	79	< 0.001

Summary

- Demographic and perioperative data are presented in table 1.
- After a mean follow-up of 11.2 years (2-18 years), 1455 patients were included with a mean age of 68.9 (range: 53-86) years.
- The mean catheter time and hospital stay were 1.2 and 1.3 days, respectively.
- The IPSS (15.9± 6.5 vs. 6.8± 5.6, p<0.001) and QoL (3.1± 1.4 vs. 1.5± 1.4, p<0.001), respectively. Similarly, the peak flow rate and PVR significantly improved which might refer to the durability of HoLEP in both subjective and objective functional outcomes
- Intraoperatively, No patients required perioperative blood transfusion while 60 patients (4.1%%) were found to have incidental prostate cancer.
- Compared to its pre-operative values, follow-up PSA has been reduced by 66.7% (p<0.001), which indicates adequate tissue removal.
- In terms of long-term complications: urethral stricture and bladder neck contracture were encountered in (1.4%) and (2.1%) respectively while (1.4%) required redo HoLEP for regrowth of obstructing adenoma. Interestingly, when analyzing the redo patients in this cohort, we found most of those patients were encountered early during surgeon s' learning curve.
- The study also refers to the logistic issues associated with the follow-up difficulty of the elderly population; as more than half of the study patients were lost to follow-up (after 10 years) which was one of the limitations.

CONCLUSION

Holmium laser enucleation of the prostate is safe, effective and durable for benign prostatic hyperplasia over long follow-up.