
Identification of a novel genomic mutations through a next-generation sequence among 51 Japanese Cystinuria patients (Look for a missing peace of Genotype Criteria?)

Shinichi Sakamoto¹*, Akinori Takei², Masaaki Fujimura³, Koji Kawamura¹, Takashi Imamoto¹, Akira Komiya¹, Koichiro Akakura⁴, Tomohiko Ichikawa¹ 1.Department of Urology, Chiba University Graduate School of medicine, 2.Department of Urology, Saiseikai Narashino Hospital, 4. JCHO Tokyo Shinjuku Medical Center

Back Grounds: Unique Characteristics of Japanese Cystinuria

D What is Cystinuria?

- Autosomal recessive disorder
- Cause recurrent Urinary Stone
- Impair transport of Cystine and dibasic amino acids (Lys, Arg, Orn)
- Defect in Cystine transporter BAT1(SLC7A9)
- and rBAT (SLC3A1) will cause Cystinuria

Incidence

1/16,000 Japanese 1/15,000 United State 1/2500 Lybian Jewish

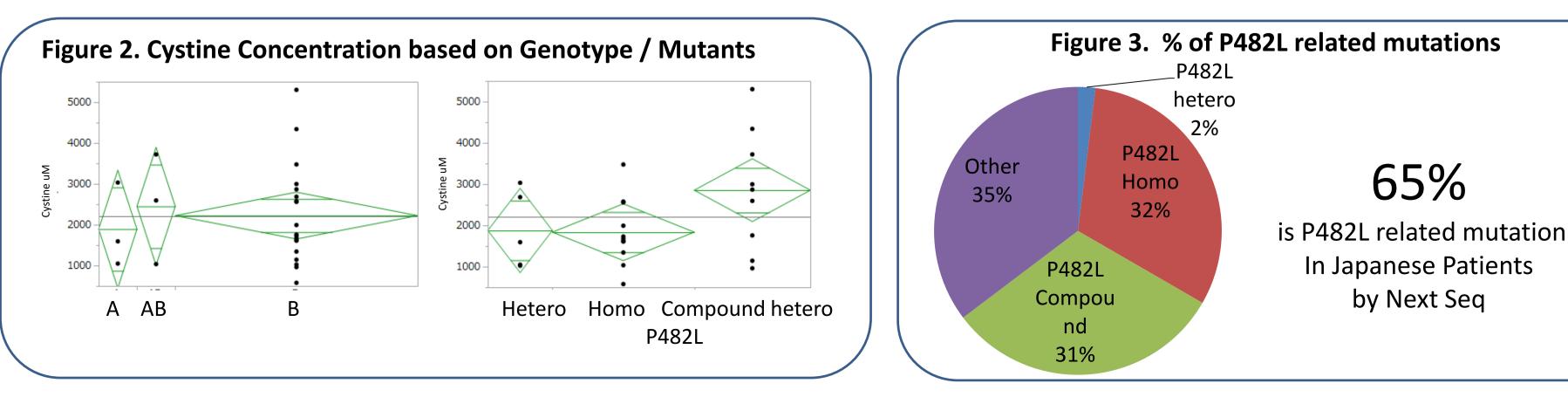
•1983 Analyzed 110,000 Urine sample and identified 39 Cystinuria patients Ito H. J Urol. 1983 May;129(5):1012-4.
•1999 Cloning of Cystine transporter; <i>BAT1</i> in mouse Chairoungdua A, et al., J Biol Chem. 1999 Oct 8;274(41):28845-8.
•2000 Identified Mutation in Cystine transporter; <i>rBAT</i> Egoshi KI, et al., Kidney Int. 2000 Jan;57(1):25-32.
•2001 Cloning of Cystine transporter; <i>BAT1</i> in Human Mizoguchi K, et al., Kidney Int. 2001 May;59(5):1821-33.
•2002 Functional analysis of Cystine transporter; <i>rBAT</i> mutation Ishihara M,et al., Nephron. 2002 Jun;91(2):276-80.
•2006 Identification of Japanese Unique mutation in <i>BAT1</i> ; P482L Shigeta Y , Sakamoto S et al., Kidney Int. 2006 Apr;69(7):1198-206.
•2009 Role of <i>BAT1</i> -C terminus in translocation of the transporter Sakamoto S et al., Biochem J. 2009 Jan 15;417(2):441-8
•2012 Genomic Analysis of 92 Japanese Cystinuria patients ; need for novel classification Sakamoto S et al., Japanese Urological Association Annual Meeting
•2013 Collaboration Study of Korean Cystinuria patients with Seoul National University; Prof. Hae II Cheong
•2018 Collaboration study with Malaysia(Malaya University), Taiwan (Chang Gung University), China(Chinese University of Hong Kong), and Thai (Chulalongkorn University)

Objectives and Methods

Hypothesis

30% ≒ Unclassified!

- 1. RNA Splicing?
- 2 Missed by Direct Seq

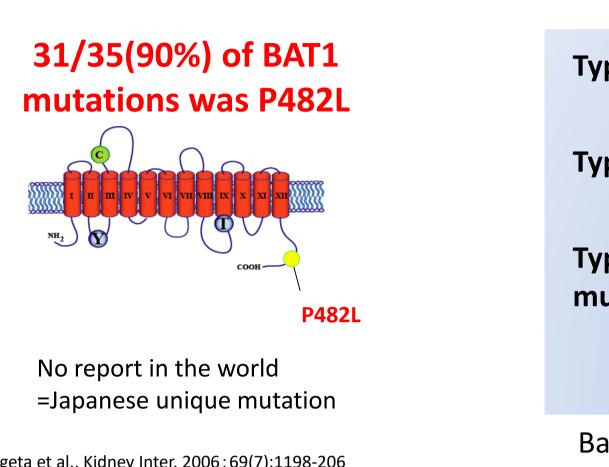

New mutation in exon-Intron boundary

New mutation in exon by Next Seq

D Method

- Purpose : Next generation sequence(Next Seq) of rBAT(*SLC3A1*) and BAT1 (*SCL7A9*) > Material : DNA from 51Cystinuria patients previously analyzed by direct sequence. \blacktriangleright Method: Exon + Exon-Intron boundary sequnce of rBAT/BAT1, AGT1 and 10 stone related transporters 1. Construction of panel by IDT. 2. Makes libraries (KAPA Hyper Plus library Kit B. Capture of the panel
 - Notes 10 Run the sequence using next generation sequence from illumine(NextSeq500
 - 5.Sequence coding region and intron-exon boundary of targeted genes
 - 6. Data analysis(home made pipeline by GATK and VarScan

Table 1	L. Result of select	ted 14 patients with nove	el mutations or no mutation amor	ng 51 Cystinuria patients by Next S	eq		Red: N	ew Mutation
PT Number	rBAT Direct Seq	BAT1 Direct Seq	rBAT Next Seq	BAT1 Next Seq	Genotype Direct	Genotype Next	Novel mutation	Genotype Change
2	No mutation			c.873+2dupT [hetero]/p.Thr204fs [hetero]	No mutation	В	+	+
59	No mutation		No mutation		No mutation	No mutation	-	-
28	No mutation		No mutation		No mutation	No mutation	-	-
11		p.Pro482Leu [hetero]		p.Pro482Leu [hetero]/ <mark>p.Val340fs [hetero]</mark>	b	В	+	+
17		p.Pro483Leu [hetero]		p.Pro482Leu [hetero]/ <mark>p.Val340fs [hetero]</mark>	b	В	+	+
41		p.Pro482Leu [hetero]		p.Pro482Leu [hetero]/p.Val340fs [hetero]	b	В	+	+
56		p.Pro482Leu [hetero]/p.Gly73Arg [hetero]	p.lle105Val [hetero]	p.Pro482Leu [hetero]/p.Gly73Arg [hetero	В	АВ	+	+
58	p.Asn442fs [hetero]		p.Asn442fs [hetero]/Exon1 del [hetero]		а	Α	+	+
60		p.Pro482Leu [hetero]		p.Pro482Leu [hetero]/ <mark>Exon9 del [hetero]</mark>	b	В	+	+
61		A354T(hetero)G1148A		p.Ala354Thr [hetero]/ <mark>p.Trp69* [htero]</mark>	b	В	+	+
63		p.Pro482Leu [hetero]		p.Pro482Leu [hetero]/ <mark>p.Asn227Asp [hetero]</mark>	b	В	+	+
68		p.Pro482Leu [homo]		p.Pro482Leu [homo]/ <mark>Exon2-13 del [hetero]</mark>	В	В	+	-
71	p.Tyr371* [hetero]		p.Tyr371* [hetero]/c.1500+1G>A [hetero]		а	Α	+	+
76		p.Pro482Leu [hetero]/p.Ser446Arg [hetero]	Exon4, 8-10 del [hetero]	p.Pro482Leu [hetero]/p.Ser446Arg [hetero]	В	AB	+	+
							12/51	11/51



30y history of Cystinuria Study

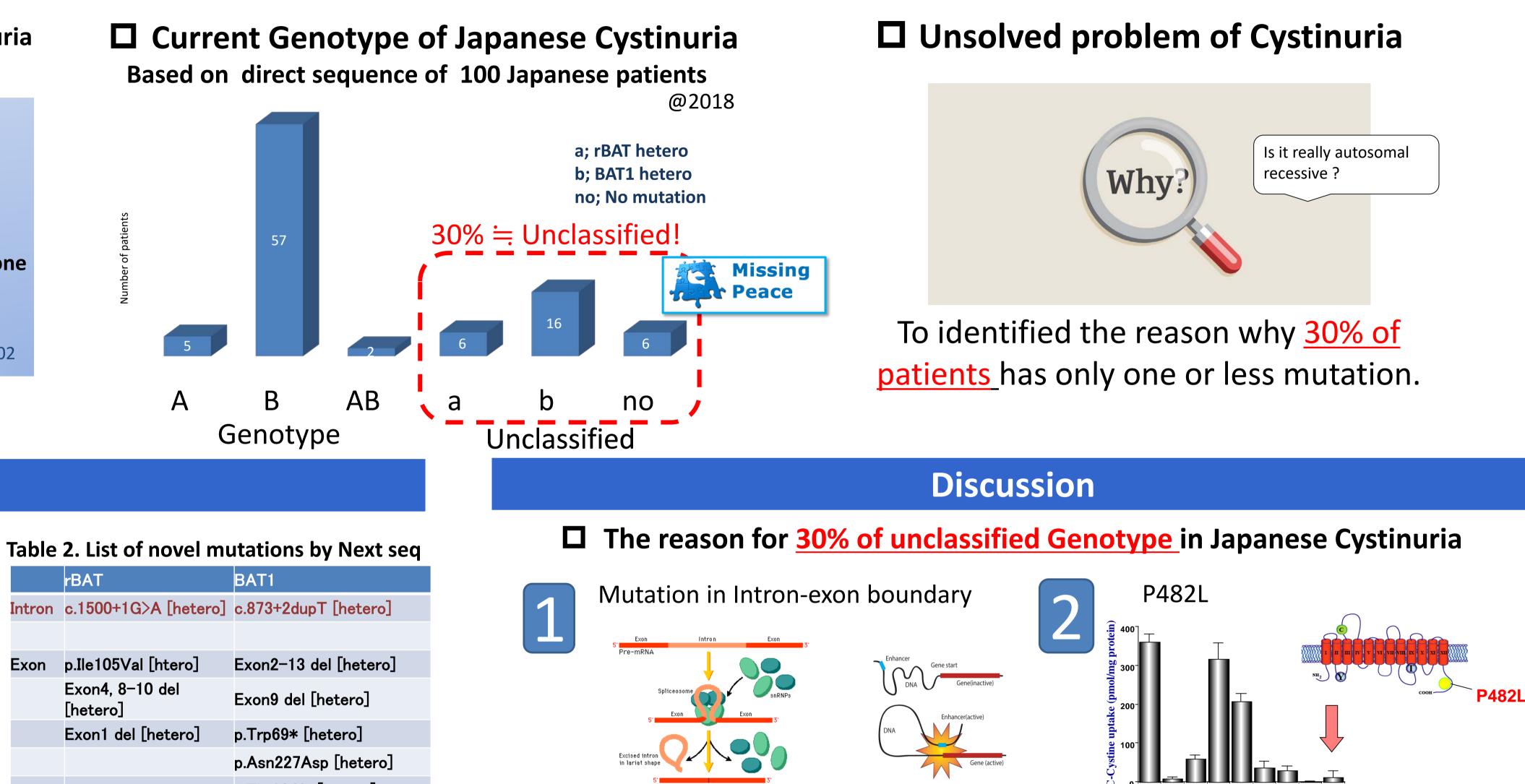
1st analysis of Japanese 42 Cystinuria Patients

BAT1 mutatio	ns		
P482L(homo)		22	1
P482L(hetero)		6	
G195R(hetero)		4	
P482L (hetero)		1	
R333W(hetero)			
P482L (hetero)		1	L
R333Q(hetero)			L
P482L (hetero)		1	
N227D(hetero)		1	
1105delA(hetero)		2	
W69stop(hetero)			
1105delA(hetero)		1	
total		35	

Results

Clinical Question of Cystinuria

Genotype classification of Cystinuria


Type A: two mutations in *SLC3A1* (rBAT)

Type B: two mutations in *SLC7A9* (BAT1)

Type AB: one mutation on *SLC3A1* and one mutation in SLC7A9

Luca D. et al., J. Am. Soc. Nephro., 2002

Based on autosomal recessive inheritance

rBAT Intron c.1500+1G>A [hetero] c.873+2dupT [hetero] Exon p.Ile105Val [htero] Exon4, 8-10 del [hetero] Exon1 del [hetero] p.Asn227Asp [hetero] p.Thr204fs [hetero] p.Val340fs [hetero] Figure 1. Genotype Classification 🗖 Direct Seq 📕 Next Seq Unclassified reduced from 25.5% ->7.8%

Future direction

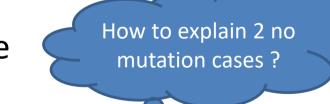
mutation

Determine the transcriptional level of intron-exon boundary mutants in SLC7A9 and SLC13A28 (possibly by WBC). Study the further genomic analysis of Cystinuria patient's genome by next generation sequence (Get a big grant!). **I** International collaboration to determine the global landscape of Cystinuria mutation.

If interested in collaboration, please E mail to rbatbat1@gmail.com or Scan

2018 AUA annual meeting

COI: Author Shinichi Sakamoto declare no financial support for this presentation


2. Affect Enhancer

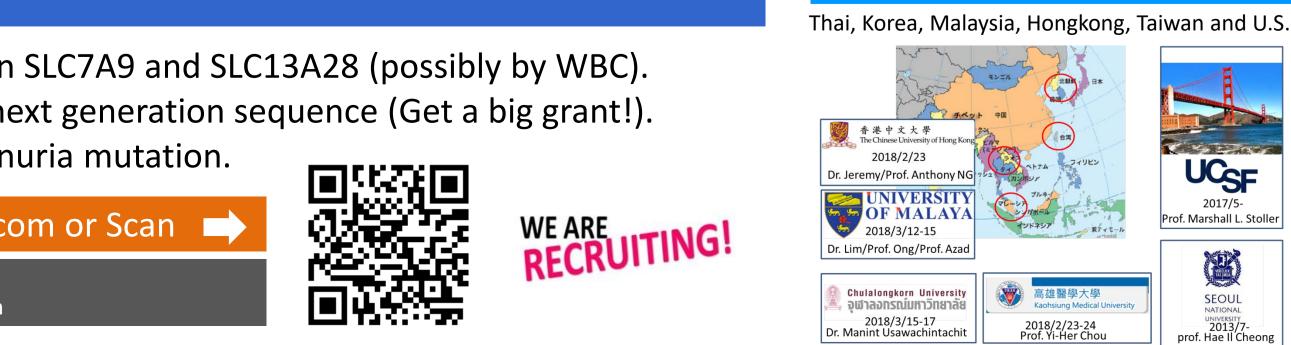
1. Affect Splicing

Mutation in Unknown Gene

A NOR CO NAP W CO NA OF OF P482L is strong enough to cause Cystinuria by a single mutation

On going international collaboratio

2018/2/23-24 Prof. Yi-Her Chou


r. Manint Usawachintachit

2017/5-

Conclusion

• Current data may represents that not only mutation in exon but also mutation in Intron-exon boundary of rBAT(SLC3A1)/BAT1(SCL7A9) may contribute to the pathogenesis of Cystinuria.

Next Seq may be a power full tool to determine mutations in Cystinuria patients.

