# Risk-stratified surveillance protocol improves cost effectiveness after radical nephroureterectomy in patients with upper tract urothelial carcinoma



M. Momota<sup>1</sup>, S. Hatakeyama<sup>1</sup>, H. Yamamoto<sup>1</sup>, Y. Tobisawa<sup>1</sup>, T. Yoneyama<sup>1</sup>, Y. Hashimoto<sup>1</sup>, T. Koie<sup>1</sup>, I. Iwabuchi<sup>2</sup>, M. Ogasawara<sup>2</sup>, T. Kawaguchi<sup>2</sup> and C. Ohyama<sup>1</sup>

1) Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan 2) Department of Urology, Aomori Prefectural Central Hospital, Aomori, Japan



#### Background:

To develop a surveillance protocol with improved cost-effectiveness after radical nephroureterectomy (RNU), as the cost-effectiveness of oncological surveillance after RNU remains unclear.

#### **Methods:**

We retrospectively evaluated 426 patients with RNU for upper tract urothelial carcinoma (UTUC) without distant metastasis at 4 hospital. Patients with routine oncological follow-up were stratified into normal-, high- and very high-risk groups according to a pathology-based protocol utilizing pathological stage, lymphovascular invasion (LVI) and surgical margin (SM). Cost-effectiveness of the pathology-based protocol was evaluated, and a risk score-based protocol was developed to optimize cost-effectiveness. Risk scores were calculated by adding risk factors independently associated with recurrence-free survival. Patients were stratified by low-, intermediate- and high-risk score. Estimated cost per recurrence detected by pathology-based and risk score based protocols was compared.

#### Results:

Of 426 patients, 109 (26%) and 113 (27%) experienced visceral and intravesical recurrences, respectively. The pathology-based protocol found significant differences in recurrence-free survival in the visceral recurrence but not in the intravesical recurrence. The medical costs per visceral recurrence detected were high, especially in normal-risk (≤pT2N0, LVI-, SM-) patients. We developed a risk score associated with visceral recurrence using Cox regression analysis. The risk score-based protocol was significantly more cost-effective than the pathology-based protocol. Estimated cost differences reached \$747,929 per visceral recurrence detected, a suggested 55% reduction.

#### **Conclusions:**

A risk score-stratified surveillance protocol has the potential to reduce over investigation after RNU without adverse effects on medical.

COI: The authors have no financial conflicts of interest disclose concerning the study: Masaki Momota

## Background of patients

|                                               | 426          |
|-----------------------------------------------|--------------|
| ge (years)                                    | $70 \pm 8.9$ |
| COG-PS >1, n=                                 | 290 (68%)    |
| lypertension, n=                              | 10 (2.3%)    |
| Diabetes Mellitus (DM), n=                    | 185 (43%)    |
| Cardiovascular disease (CVD), n=              | 70 (16%)     |
| Smorking, n=                                  | 75 (18%)     |
| GFR before surgery (ml/min/1.73m²)            | 193 (45%)    |
| łydronephrosis, n=                            | $58 \pm 18$  |
| leoadjuvant chemotherapy (NAC), n=            | 266 (62%)    |
| Clinical stage                                | 102 (24%)    |
| ≥cT3, n=                                      | 229 (54%)    |
| cN+, n=                                       | 34 (8.0%)    |
| umor location, n=                             |              |
| Renal pelvis                                  | 166 (39%)    |
| Ureter                                        | 235 (55%)    |
| Multiple                                      | 25 (5.9%)    |
| aparoscopic surgery, n=                       | 75 (18%)     |
| ostoperative complications (G3 or higher), n= | 14 (3.3%)    |
| athological outcome, n=                       |              |
| ≥pT3                                          | 182 (43%)    |
| pN+                                           | 30 (7.0%)    |
| High grade                                    | 397 (93%)    |
| Surgical margin (SM) positive                 | 14 (3.3%)    |
| Lymphovascular invasion (LVI) positive        | 127 (30%)    |
| Median follow-up (Months)                     | 40           |
| isease recurrence, n=                         |              |
| Intravesical                                  | 113 (27%)    |
| Visceral                                      | 109 (26%)    |
| Deceased, n=                                  |              |
| Cancer-specific                               | 80 (19%)     |
| Any cause                                     | 103 (24%)    |
|                                               |              |

# Multivariate analysis for risk score calculation

| Factor                              | P value | P value HR |           | Risk<br>score |  |
|-------------------------------------|---------|------------|-----------|---------------|--|
| Tumor in ureter                     | <0.001  | 2.25       | 1.44-3.52 | 1             |  |
| Hydronephrosis                      | <0.001  | 2.83       | 1.76-4.56 | 1             |  |
| Lymph node involvement (cN+ or pN+) | <0.001  | 3.13       | 1.97-4.97 | 2             |  |
| Preoperative CKD                    | <0.001  | 3.49       | 2.17-5.62 | 2             |  |
| pT3-4                               | <0.001  | 4.52       | 2.96-6.89 | 2             |  |
| LVI+                                | <0.001  | 4.68       | 3.18-6.89 | 2             |  |
| SM+                                 | <0.001  | 8.85       | 4.78-16.4 | 2             |  |

Low risk (0-2)
Intermediate risk (3-5)
Very high risk (6-12)

# Risk score-based protocol

| Risk-score-based                  | Months after RNU |   |   |    |    |    |    |    |    |    |    |    |    |    |
|-----------------------------------|------------------|---|---|----|----|----|----|----|----|----|----|----|----|----|
| Type of investigation             | 3                | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
| Basic exam (blood and serum test, | _                |   | • |    | •  |    |    | _  | •  | •  | •  |    | •  |    |
| ultrasound, and chest X-ray)      | •                | • |   | •  |    | •  |    | •  |    | •  |    | •  |    | •  |
| Urine analysis, cytology and      | _                |   |   |    |    |    |    |    |    |    |    |    |    |    |
| cystoscope                        | •                | • | • | •  | •  | •  |    | •  |    | •  |    | •  |    | •  |
| CT scan of chest/abdomen/pelvis   |                  | • | • |    | •  |    |    |    | •  |    | •  |    |    |    |
| Low-risk (0-2)                    |                  | • | • | •  | •  | -  |    |    | •  | •  | •  | •  | •  | •  |
| Intermediate-risk (3-5)           |                  | • |   | •  |    |    |    | •  |    | •  |    | •  |    | •  |
| Very high-risk (6-12)             | •                | • | • | •  | •  | •  |    | •  |    | •  |    | •  |    | •  |





# Estimated screening cost (Risk score-based protocol)



### Total surveillance cost for 5 years

