Low Income and Non-White Race are Strongly Associated with Poorer Quality of Life for Nephrolithiasis Patients Tessnim R. Ahmad,¹ David T. Tzou,¹ Shalonda Reliford-Titus,¹ Clinton Wu,¹ Jeremy Goodman,¹ Jodi A. Antonelli,² Davis P. Viprakasit,³ Timothy D. Averch,⁴ Sri Sivalingam,⁵ Ben H. Chew,⁶ Vincent G. Bird,⁷ Vernon M. Paise, Jr.,⁸ Necole M. Streeper,⁹ Roger L. Sur,¹⁰ Stephen Y. Nakada,¹¹ Kristina L. Penniston,¹¹ Thomas Chi¹ # Background - Kidney stones are common in the U.S. with an estimated lifetime prevalence of 8.8%.ⁱ - Pain from kidney stones can be severe and recurrence rates are as high as 50%. - Stone formers have been shown to have significantly lower quality of life (QOL) compared to healthy adults.^{iii,iv} - The link between socioeconomic status (SES) and general health is known: The lower one's income and education, the greater the likelihood of disease and death. - While the impact of SES on healthrelated QOL (HRQOL) has been shown in a variety of diseases, it has not been studied in stone formers. #### Objectives - To understand the association between SES, measured by income and occupation, and HRQOL among stone formers. - To explore other demographic and clinical factors that may impact HRQOL in stone disease, such as race and BMI. #### Methods Who | Patients at 10 U.S. stone centers presenting for stone evaluation. What | Participants completed WISQOL, a 28-item HRQOL survey specific for stone disease. They also provided their ZIP codes, which were used to estimate income using Census data. How | Simple linear regression for univariate analyses. Mixed-effects regression, with ZIP as the random effect, for the income analysis and multivariate model. #### **Study Cohort** - n = 2,057 - mean age = 53 years - 48% female - \$56,909/year average household income - 75% overweight/obese - 45% had recurrent stones (2-5) and 29% had severe recurrent stones (>5) ### Conclusions - Lower income and non-White race were strongly associated with poorer kidney stone disease-specific HRQOL, even in a multivariate model accounting for demographic and clinical covariates. - Clinical characteristics such as elevated BMI and multiple comorbidities were associated with poorer HRQOL, as was female gender. This is consistent with prior research in urolithiasis and other diseases. iii,iv,vi,vii - Income and race may be as important as clinical factors in a stone former's HRQOL. - Our study provides a starting point to ground patient-centered care for kidney stone patients. Potential areas of study include strategies to tailor care to patients with unique socioeconomic needs, such as telehealth for follow-up and surgical planning sensitive to SES factors. ## Results Regression of socioeconomic and demographic variables on HRQOL | | Univariate | Multivariate | |------------------------------------|--|--| | Income | Lower income*** | Lower income** | | Gender
(Ref. = Male) | Female gender*** | Female gender** | | Race
(Ref. = White) | Non-White race*** | Non-White race** | | Occupation
(Ref. = Mgmt./Prof.) | Sales/Service** Manual Labor* Homemaker/Caregiver*** Retired/Unemployed* | Sales/Service Manual Labor Homemaker/Caregiver Retired/Unemployed* | | | | | Variables shown are predictors of *lower* HRQOL. Asterisks indicate p-value: * <0.05, ** < 0.01, *** < 0.001. Other variables associated with lower HRQOL in the multivariate model include: younger age**, super obese BMI***, 5+ comorbidities**, and >5 stone events.*** Average HRQOL by domain Social 4.1/5 Symptoms 3.7/5 Emotional 3.6/5 Vitality 3.5/5 ¹UCSF, ²UT Southwestern, ³UNC, ⁴University of Pittsburgh Medical Center, ⁵Cleveland Clinic, ⁶University of British Columbia, Vancouver, ⁷University of Florida Health, ⁸Dartmouth-Hitchcock, ⁹Penn State Health, ¹⁰UCSD, ¹¹University of Wisconsin School of Medicine and Public Health iScales et al. *Eur. Urol.* 2012; 62: 160, iiPearle et al. *J Urol.* 2005; 173: 848, iiiPenniston et al. *J Urol.* 2007; 178: 2435, ivBensalah et al. *J Urol.* 2008; 179: 2238, vBraveman et al. *Am J Public Health.* 2010; 100: 186, viGijsberts et al. *Open Heart.* 2015; 2: e000231, viiHou et al. *Am. J. Crit. Care.* 2004; 13: 153