

Anastrazole is an Effective Treatment for Infertile Hyperestrogenemic Men

Andrew C. Radtke, MD, Dane P. Johnson, MD, Jay I. Sandlow, MD

Introduction

- Obesity is one of many modifiable factors known to have an effect on male fertility
- Increased adipose tissue harbors aromatase, which converts testosterone to estradiol and estrone
- Men with increased aromatase activity may experience hypogonadism in addition to hyperestrogenemia
- Elevated estradiol inhibits the hypothalamus-pituitarygonadal axis, resulting in decreased LH and FSH secretion, and ultimately impaired steroidogenesis and spermatogenesis
- We investigated the effects of anastrazole, an aromatase inhibitor, on the semen profile of eugonatotropic infertile men with hyperestrogenemia and no other male factor (varicocele, genetic abnormalities, exogenous hormone use).

Methods

- Inclusion criteria:
- Abnormal semen analysis
- Absolute (42pg/mL) or relatively (T:E2 < 10) elevated estradiol level
- Exclusion criteria:
- Palpable varicocele
- Hypergonatotrophic hypogonadism
- Hormonally active pharmaceutical
- Abnormal karyotype
- Y chromosome microdeletion
- Data gathered:
 - Average testicular volume
 - BMI
 - Serum FSH, LH, T, E2
 - Semen parameters
- Aromatase Inhibitor (anastrazole) dosing:
 - 1mg three times/week

Results

	Mean	Range
Age	35.2	29-49
Years attempting to conceive	2.8	0.2-9
BMI (kg/m²)	42.2	26.6-56.5
Testicular volume (cc)	16.9	10-22

Lab	Pre Tx	Post Tx	p Value
FSH (mIU/mL)	5.05		
LH (mIU/mL)	5.07		
Testosterone (ng/dL)	258.8	505.5	<0.01
Estradiol 17B (pg/mL)	39.27	17	<0.01
Testosterone:Estrogen	6.81	41.63	<0.01
SA Volume (ml)	3.95	2.93	0.98
SA Sperm Concentration (10 ⁶ /mL)	12.49	15.3	0.07
SA Motility (%)	44.67	37.56	0.36
SA Progressive Motility (%)	28.35	27.28	0.12
SA Sperm Count (x10 ⁶)	31.28	39.91	0.04
SA TPMS Count (x10 ⁶)	7.74	13.38	0.02

Results

- There were 23 men who met inclusion criteria and had adequate post treatment follow up.
- Pre-treatment total testosterone, estradiol, and T:E ratio were all abnormal.
- Post treatment, all of these values increased in a statistically significant fashion.
- There was a statistically significant improvement in total sperm count and total progressively motile sperm count.

Discussion

- Hyperestrogenemia (either absolute or relative) impacts gonadotrophin and/or sperm production typically due to increased aromatase activity; thus, aromatase inhibitors often effective
- Decreased estradiol production allows for increased LH/FSH secretion and results in increased total testosterone, as well as sperm production
- Our experience has demonstrated the potential improvement in testosterone and total sperm count based on this premise.

Conclusions

- Men with abnormal semen parameters and low testosterone should be evaluated for hyperestrogenemia
- Anastrazole can significantly improve total testosterone serum levels, T:E ratio, and semen quality (sperm count, total motile sperm count).

References

- Raman JD, Schlegel PN. Aromatase inhibitors for male infertility. J Urol. 2002;167(2 Pt 1):624-629.
- 2. Pavlovich CP, King P, Goldstein M, Schlegel PN. Evidence of a treatable endocrinopathy in infertile men. *J Urol.* 2001;165:837-841.
- 3. Bharti S, Misro MM, Rai U. Clomiphene citrate po- tentiates the adverse effects of estrogen on rat testis and down-regulates the expression of steroidogenic enzyme genes. *Fertil Steril*. 2013;99:140-148.
- 4. Burnett-Bowie SA, Roupenian KC, Dere ME, et al. Effects of aromatase inhibition in hypogonadal older men: a randomized, double-blind, placebo-controlled trial. *Clin Endocrinol (Oxf)*. 2009;70:116-123.
- 5. Loves S, Ruinemans-Koerts J, de Boer H. Letro-zole once a week normalizes serum testosterone in obesity-related male hypogonadism. *Eur J Endocrinol*. 2008;158:741-747.
- 6. de Boer H, Verschoor L, Ruinemans-Koerts J, Jansen M. Letrozole normalizes serum testosterone in se-verely obese men with hypogonadotropic hypogonad- ism. *Diabetes Obes Metab*. 2005;7:211-215.
- 7. Zumoff B, Miller LK, Strain GW. Reversal of the hypogonadotropic hypogonadism of obese men by administration of the aromatase inhibitor testolac- tone. Metabolism. 2003;52:1126-1128. Schlegel PN. Aromatase inhibitors for male infertility. Fertil Steril. 2012;98:1359-1362.